Off-diagonal density profiles and conformal invariance

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Off - diagonal density profiles and conformal invariance

Off-diagonal profiles φ od (v) of local densities (e.g. order parameter or energy density) are calculated at the bulk critical point, by conformal methods, on a strip with transverse coordinate v, for different types of boundary conditions (free, fixed and mixed). Such profiles, which are defined by the non-vanishing matrix element 0|ˆφ(v)|φ of the appropriate operatorˆφ(v) between the ground s...

متن کامل

Conformal off-diagonal boundary density profiles on a semi-infinite strip

The off-diagonal profile φ od (v) associated with a local operator φ̂(v) (order parameter or energy density) close to the boundary of a semi-infinite strip with width L is obtained at criticality using conformal methods. It involves the surface exponent x φ and displays a simple universal behaviour which crosses over from surface finite-size scaling when v/L is held constant to corner finite-siz...

متن کامل

Off-diagonal quantum holonomy along density operators

Uhlmann’s concept of quantum holonomy for paths of density operators is generalised to the off-diagonal case providing insight into the geometry of state space when the Uhlmann holonomy is undefined. Comparison with previous off-diagonal geometric phase definitions is carried out and an example comprising the transport of a Bell-state mixture is given.

متن کامل

Diagonal Dominance and Harmless Off-diagonal Delays

Systems of linear differential equations with constant coefficients, as well as Lotka–Volterra equations, with delays in the off–diagonal terms are considered. Such systems are shown to be asymptotically stable for any choice of delays if and only if the matrix has a negative weakly dominant diagonal.

متن کامل

Off - Diagonal

Experience shows that there is a strong parallel between metrization theory for compact spaces and for linearly ordered spaces in terms of diagonal conditions. Recent theorems of Gruenhage, Pelant, Kombarov, and Stepanova have described metrizability of compact (and related) spaces in terms of the offdiagonal behavior of those spaces, i.e., in terms of properties of X −∆. In this paper, we show...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Physics A: Mathematical and General

سال: 1997

ISSN: 0305-4470,1361-6447

DOI: 10.1088/0305-4470/30/5/006